3.4.79 \(\int \frac {(a+b x)^{3/2} (A+B x)}{x^2} \, dx\)

Optimal. Leaf size=95 \[ \frac {(a+b x)^{3/2} (2 a B+3 A b)}{3 a}+\sqrt {a+b x} (2 a B+3 A b)-\sqrt {a} (2 a B+3 A b) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )-\frac {A (a+b x)^{5/2}}{a x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {78, 50, 63, 208} \begin {gather*} \frac {(a+b x)^{3/2} (2 a B+3 A b)}{3 a}+\sqrt {a+b x} (2 a B+3 A b)-\sqrt {a} (2 a B+3 A b) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )-\frac {A (a+b x)^{5/2}}{a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^(3/2)*(A + B*x))/x^2,x]

[Out]

(3*A*b + 2*a*B)*Sqrt[a + b*x] + ((3*A*b + 2*a*B)*(a + b*x)^(3/2))/(3*a) - (A*(a + b*x)^(5/2))/(a*x) - Sqrt[a]*
(3*A*b + 2*a*B)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{3/2} (A+B x)}{x^2} \, dx &=-\frac {A (a+b x)^{5/2}}{a x}+\frac {\left (\frac {3 A b}{2}+a B\right ) \int \frac {(a+b x)^{3/2}}{x} \, dx}{a}\\ &=\frac {(3 A b+2 a B) (a+b x)^{3/2}}{3 a}-\frac {A (a+b x)^{5/2}}{a x}+\frac {1}{2} (3 A b+2 a B) \int \frac {\sqrt {a+b x}}{x} \, dx\\ &=(3 A b+2 a B) \sqrt {a+b x}+\frac {(3 A b+2 a B) (a+b x)^{3/2}}{3 a}-\frac {A (a+b x)^{5/2}}{a x}+\frac {1}{2} (a (3 A b+2 a B)) \int \frac {1}{x \sqrt {a+b x}} \, dx\\ &=(3 A b+2 a B) \sqrt {a+b x}+\frac {(3 A b+2 a B) (a+b x)^{3/2}}{3 a}-\frac {A (a+b x)^{5/2}}{a x}+\frac {(a (3 A b+2 a B)) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x}\right )}{b}\\ &=(3 A b+2 a B) \sqrt {a+b x}+\frac {(3 A b+2 a B) (a+b x)^{3/2}}{3 a}-\frac {A (a+b x)^{5/2}}{a x}-\sqrt {a} (3 A b+2 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 71, normalized size = 0.75 \begin {gather*} \frac {\sqrt {a+b x} (a (8 B x-3 A)+2 b x (3 A+B x))}{3 x}-\sqrt {a} (2 a B+3 A b) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^(3/2)*(A + B*x))/x^2,x]

[Out]

(Sqrt[a + b*x]*(2*b*x*(3*A + B*x) + a*(-3*A + 8*B*x)))/(3*x) - Sqrt[a]*(3*A*b + 2*a*B)*ArcTanh[Sqrt[a + b*x]/S
qrt[a]]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.11, size = 95, normalized size = 1.00 \begin {gather*} \left (-2 a^{3/2} B-3 \sqrt {a} A b\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )+\frac {\sqrt {a+b x} \left (-6 a^2 B+6 A b (a+b x)-9 a A b+4 a B (a+b x)+2 B (a+b x)^2\right )}{3 b x} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((a + b*x)^(3/2)*(A + B*x))/x^2,x]

[Out]

(Sqrt[a + b*x]*(-9*a*A*b - 6*a^2*B + 6*A*b*(a + b*x) + 4*a*B*(a + b*x) + 2*B*(a + b*x)^2))/(3*b*x) + (-3*Sqrt[
a]*A*b - 2*a^(3/2)*B)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

________________________________________________________________________________________

fricas [A]  time = 1.69, size = 151, normalized size = 1.59 \begin {gather*} \left [\frac {3 \, {\left (2 \, B a + 3 \, A b\right )} \sqrt {a} x \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (2 \, B b x^{2} - 3 \, A a + 2 \, {\left (4 \, B a + 3 \, A b\right )} x\right )} \sqrt {b x + a}}{6 \, x}, \frac {3 \, {\left (2 \, B a + 3 \, A b\right )} \sqrt {-a} x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (2 \, B b x^{2} - 3 \, A a + 2 \, {\left (4 \, B a + 3 \, A b\right )} x\right )} \sqrt {b x + a}}{3 \, x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(B*x+A)/x^2,x, algorithm="fricas")

[Out]

[1/6*(3*(2*B*a + 3*A*b)*sqrt(a)*x*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(2*B*b*x^2 - 3*A*a + 2*(4*B
*a + 3*A*b)*x)*sqrt(b*x + a))/x, 1/3*(3*(2*B*a + 3*A*b)*sqrt(-a)*x*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (2*B*b*x
^2 - 3*A*a + 2*(4*B*a + 3*A*b)*x)*sqrt(b*x + a))/x]

________________________________________________________________________________________

giac [A]  time = 1.29, size = 93, normalized size = 0.98 \begin {gather*} \frac {2 \, {\left (b x + a\right )}^{\frac {3}{2}} B b + 6 \, \sqrt {b x + a} B a b + 6 \, \sqrt {b x + a} A b^{2} - \frac {3 \, \sqrt {b x + a} A a b}{x} + \frac {3 \, {\left (2 \, B a^{2} b + 3 \, A a b^{2}\right )} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a}}}{3 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(B*x+A)/x^2,x, algorithm="giac")

[Out]

1/3*(2*(b*x + a)^(3/2)*B*b + 6*sqrt(b*x + a)*B*a*b + 6*sqrt(b*x + a)*A*b^2 - 3*sqrt(b*x + a)*A*a*b/x + 3*(2*B*
a^2*b + 3*A*a*b^2)*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a))/b

________________________________________________________________________________________

maple [A]  time = 0.02, size = 77, normalized size = 0.81 \begin {gather*} 2 \sqrt {b x +a}\, A b +2 \sqrt {b x +a}\, B a +\frac {2 \left (b x +a \right )^{\frac {3}{2}} B}{3}+2 \left (-\frac {\left (3 A b +2 B a \right ) \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt {b x +a}\, A}{2 x}\right ) a \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)*(B*x+A)/x^2,x)

[Out]

2/3*(b*x+a)^(3/2)*B+2*(b*x+a)^(1/2)*A*b+2*B*a*(b*x+a)^(1/2)+2*a*(-1/2*(b*x+a)^(1/2)*A/x-1/2*(3*A*b+2*B*a)/a^(1
/2)*arctanh((b*x+a)^(1/2)/a^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 2.00, size = 97, normalized size = 1.02 \begin {gather*} \frac {1}{6} \, {\left (\frac {3 \, {\left (2 \, B a + 3 \, A b\right )} \sqrt {a} \log \left (\frac {\sqrt {b x + a} - \sqrt {a}}{\sqrt {b x + a} + \sqrt {a}}\right )}{b} - \frac {6 \, \sqrt {b x + a} A a}{b x} + \frac {4 \, {\left ({\left (b x + a\right )}^{\frac {3}{2}} B + 3 \, {\left (B a + A b\right )} \sqrt {b x + a}\right )}}{b}\right )} b \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(B*x+A)/x^2,x, algorithm="maxima")

[Out]

1/6*(3*(2*B*a + 3*A*b)*sqrt(a)*log((sqrt(b*x + a) - sqrt(a))/(sqrt(b*x + a) + sqrt(a)))/b - 6*sqrt(b*x + a)*A*
a/(b*x) + 4*((b*x + a)^(3/2)*B + 3*(B*a + A*b)*sqrt(b*x + a))/b)*b

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 96, normalized size = 1.01 \begin {gather*} \left (2\,A\,b+2\,B\,a\right )\,\sqrt {a+b\,x}+\frac {2\,B\,{\left (a+b\,x\right )}^{3/2}}{3}+2\,\mathrm {atan}\left (\frac {2\,\left (3\,A\,b+2\,B\,a\right )\,\sqrt {-\frac {a}{4}}\,\sqrt {a+b\,x}}{2\,B\,a^2+3\,A\,b\,a}\right )\,\left (3\,A\,b+2\,B\,a\right )\,\sqrt {-\frac {a}{4}}-\frac {A\,a\,\sqrt {a+b\,x}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x)*(a + b*x)^(3/2))/x^2,x)

[Out]

(2*A*b + 2*B*a)*(a + b*x)^(1/2) + (2*B*(a + b*x)^(3/2))/3 + 2*atan((2*(3*A*b + 2*B*a)*(-a/4)^(1/2)*(a + b*x)^(
1/2))/(2*B*a^2 + 3*A*a*b))*(3*A*b + 2*B*a)*(-a/4)^(1/2) - (A*a*(a + b*x)^(1/2))/x

________________________________________________________________________________________

sympy [A]  time = 27.56, size = 202, normalized size = 2.13 \begin {gather*} - \frac {A a^{2} b \sqrt {\frac {1}{a^{3}}} \log {\left (- a^{2} \sqrt {\frac {1}{a^{3}}} + \sqrt {a + b x} \right )}}{2} + \frac {A a^{2} b \sqrt {\frac {1}{a^{3}}} \log {\left (a^{2} \sqrt {\frac {1}{a^{3}}} + \sqrt {a + b x} \right )}}{2} + \frac {4 A a b \operatorname {atan}{\left (\frac {\sqrt {a + b x}}{\sqrt {- a}} \right )}}{\sqrt {- a}} - \frac {A a \sqrt {a + b x}}{x} + 2 A b \sqrt {a + b x} + \frac {2 B a^{2} \operatorname {atan}{\left (\frac {\sqrt {a + b x}}{\sqrt {- a}} \right )}}{\sqrt {- a}} + 2 B a \sqrt {a + b x} + B b \left (\begin {cases} \sqrt {a} x & \text {for}\: b = 0 \\\frac {2 \left (a + b x\right )^{\frac {3}{2}}}{3 b} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)*(B*x+A)/x**2,x)

[Out]

-A*a**2*b*sqrt(a**(-3))*log(-a**2*sqrt(a**(-3)) + sqrt(a + b*x))/2 + A*a**2*b*sqrt(a**(-3))*log(a**2*sqrt(a**(
-3)) + sqrt(a + b*x))/2 + 4*A*a*b*atan(sqrt(a + b*x)/sqrt(-a))/sqrt(-a) - A*a*sqrt(a + b*x)/x + 2*A*b*sqrt(a +
 b*x) + 2*B*a**2*atan(sqrt(a + b*x)/sqrt(-a))/sqrt(-a) + 2*B*a*sqrt(a + b*x) + B*b*Piecewise((sqrt(a)*x, Eq(b,
 0)), (2*(a + b*x)**(3/2)/(3*b), True))

________________________________________________________________________________________